GeNGA: A Generalization of Natural Gradient Ascent with Positive and Negative Convergence Results
نویسنده
چکیده
Natural gradient ascent (NGA) is a popular optimization method that uses a positive definite metric tensor. In many applications the metric tensor is only guaranteed to be positive semidefinite (e.g., when using the Fisher information matrix as the metric tensor), in which case NGA is not applicable. In our first contribution, we derive generalized natural gradient ascent (GeNGA), a generalization of NGA which allows for positive semidefinite non-smooth metric tensors. In our second contribution we show that, in standard settings, GeNGA and NGA can both be divergent. We then establish sufficient conditions to ensure that both achieve various forms of convergence. In our third contribution we show how several reinforcement learning methods that use NGA without positive definite metric tensors can be adapted to properly use GeNGA.
منابع مشابه
Linear Convergence of Proximal-Gradient Methods under the Polyak-Łojasiewicz Condition
In 1963, Polyak proposed a simple condition that is sufficient to show that gradient descent has a global linear convergence rate. This condition is a special case of the Łojasiewicz inequality proposed in the same year, and it does not require strong-convexity (or even convexity). In this work, we show that this much-older Polyak-Łojasiewicz (PL) inequality is actually weaker than the four mai...
متن کاملScalable Learning in Stochastic Games
Stochastic games are a general model of interaction between multiple agents. They have recently been the focus of a great deal of research in reinforcement learning as they are both descriptive and have a well-defined Nash equilibrium solution. Most of this recent work, although very general, has only been applied to small games with at most hundreds of states. On the other hand, there are land...
متن کاملLinear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-\L{}ojasiewicz Condition
In 1963, Polyak proposed a simple condition that is sufficient to show a global linear convergence rate for gradient descent. This condition is a special case of the Lojasiewicz inequality proposed in the same year, and it does not require strong convexity (or even convexity). In this work, we show that this much-older PolyakLojasiewicz (PL) inequality is actually weaker than the main condition...
متن کاملThe Hyperbolic Quadratic Eigenvalue Problem
The hyperbolic quadratic eigenvalue problem (HQEP) was shown to admit the Courant-Fischer type min-max principles in 1955 by Duffin and Cauchy type interlacing inequalities in 2010 by Veselić. It can be regarded as the closest analogue (among all kinds of quadratic eigenvalue problems) to the standard Hermitian eigenvalue problem (among all kinds of standard eigenvalue problems). In this paper,...
متن کاملCrack Detection In Functionally Graded Beams Using Conjugate Gradient Method
In this paper the conjugate gradient (CG) method is employed for identifying the parameters of crack in a functionally graded beam from natural frequency measurement. The crack is modeled as a massless rotational spring with sectional flexibility. By using the Euler-Bernoulli beam theory on two separate beams respectively and applying the compatibility requirements of the crack, the characteris...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014